The continuum and emission line properties of low luminosity Type-1 AGN

Jonathan Stern & Ari Laor
NLS1 Conference
Milano 2011
AGN – Open Questions

What is the dependence on L_{Bol}, L/L_{Edd} & M_{BH} of:
1. The continuum emission mechanism
2. The narrow and broad line-emitting gas properties

What is the dependence on broad line luminosity ($L_{bH\alpha}$) and width (FWHM) of:
1. The spectral energy distribution (SED)?
2. The broad and narrow emission line EW?
3. The BPT Position (narrow emission line ratios)?
Outline

A. The new Broad $H\alpha$ selected sample

B. What is the dependence on $L_{bH\alpha}$ and FWHM of the:
 1. spectral energy distribution (SED)?
 2. broad and narrow emission line EW?
 3. BPT Position (narrow emission line ratios)?
The Broad-Hα Selected Sample

SDSS DR7 (~1M objects): $z < 0.31$, S/N>10 → ~200K objects

1. $F_{\lambda}(10^{-17} \text{ erg cm}^{-2} \text{s}^{-1} \text{Å}^{-1})$

2. $F_{\lambda,\text{raw}}(10^{-17} \text{ erg cm}^{-2} \text{s}^{-1} \text{Å}^{-1})$

3. $L_{\lambda}(10^{10} \text{ erg s}^{-1} \text{Å}^{-1})$

4. 1,000<$FWHM<$30,000 km s$^{-1}$; minimum Broad Hα S/N

→ ~8K objects

→ Final sample: 3,824 objects
Similar Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Data Release</th>
<th># of objects</th>
<th>Main Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Sample</td>
<td>DR7</td>
<td>3,824</td>
<td></td>
</tr>
<tr>
<td>Greene & Ho 2007</td>
<td>DR4</td>
<td>8,495</td>
<td>Lower S/N threshold, No published NL fluxes, $\Delta \lambda = 300\text{Å}$ (look for low M_{BH})</td>
</tr>
<tr>
<td>Vanden Berk et al. 2006</td>
<td>DR3</td>
<td>4,666</td>
<td>Lower S/N threshold, Require total FWHM (NL+BL) >1000 km s$^{-1}$, $z < 0.75$</td>
</tr>
<tr>
<td>Hao et al. 2005</td>
<td>DR2</td>
<td>1,317</td>
<td>Lower S/N threshold, Simpler NL / BL decomposition</td>
</tr>
</tbody>
</table>

Our additions:

1. $\Delta \lambda = 600\text{Å}$, very broad lines are detectable
2. Narrow line measurements
3. Additional photometry:
 2MASS (detection fraction - 98%), GALEX (83%), ROSAT (42%)
Broad H\(\alpha\) Luminosity \((L_{bH\alpha})\) Distribution

New sample: BLR selected

SDSS Quasar Catalog (Schneider et al. 10): Optically selected

Ho et al. 97: Narrow slit (x3)
The diagram shows the correlation between the logarithm of the broad $H\alpha$ luminosity relative to the Eddington luminosity ($L_{bH\alpha}/L_{Edd}$) and the FWHM of the broad $H\alpha$ line. Low flux in wings and low Broad $H\alpha$ S/N are indicated by arrows on the graph. The selection criteria are marked by dotted lines, and the luminosity of the black hole ($M_{BH} = 10^9 M_\odot$) is shown by a dotted line. The parameters are defined as:

$m \equiv \log \frac{M_{BH}}{M_\odot}$; $l \equiv \log \frac{L}{L_{Edd}}$

The range for m is from 8 to 14, and for l from 3 to 14.
Eddington Ratio Distribution

New Sample

Point sources in the new sample

Kollmeier et al. 06

Bright quasar sample

all 3 selected to be point sources

\[\text{tendency for } \log \frac{L}{L_{Edd}} \sim -0.5 \text{ seems like a selection effect} \]
Outline

A. The new Broad Hα selected sample

B. What is the dependence on $L_{bH\alpha}$ and FWHM of the:
 1. spectral energy distribution (SED)?
 2. broad and narrow emission line EW?
 3. BPT Position (narrow emission line ratios)?
Mean Spectral Energy Distribution
Mean Spectral Energy Distribution

1.2 μm (J)

Hosts are more massive

Residuals

Matched Galaxies

3940Å

Residuals

Hosts are bluer

Matched Galaxies

2Mass SDSS Galex

Total

Residual = Total - Scaled AGN

Redshift Matched Non-Active Galaxies

Matched Galaxies

Residuals

$L_{\text{H}\alpha}$ (erg s$^{-1}$)

42.0

log v (Hz)
Mean Spectral Energy Distribution

$\lambda = 1.2 \mu m (J)$

Hosts are more massive

Residuals

$\lambda = 3940 \AA$

Hosts are bluer

Residuals

Matched Galaxies

For $L_{bH\alpha} > 10^{41.5}$ erg s$^{-1}$, the mean SED remains constant with luminosity and scales with $L_{bH\alpha}$.
SED by $L_{bH\alpha}$ & Slope

Substantial absorption by dust

No absorption by dust

X-ray less affected

2MASS SDSS GALEX ROSAT
(+1 dec)
SED by

L_{bH} & Slope

Total

No absorption by dust

Substantial absorption by dust

X-ray less affected

Substantial host contamination

Slight host contamination

No absorption by dust

Substantial host contamination

Slight host contamination

Substantial absorption by dust

2MASS SDSS GALEX ROSAT

$(+1 \text{ dec})$
SED by $L_{bH\alpha}$ & Slope

![Graph showing SED by $L_{bH\alpha}$ & Slope]
Main changes to optical slope are due to mechanisms external to the accretion disk.
Spectrum by FWHM – Highest $L_{bH\alpha} \text{ bin}$

FeII Multiplets (Phillips 78)

NLS1s

Very broad lines
SED by $L_{bH\alpha}$ and FWHM

Mass increase with FWHM

Widest Hα

Narrowest Hα (NLS1s)

Zoom on absorption features:
flux increases with FWHM
Outline

A. The new Broad Hα selected sample

B. What is the dependence on $L_{bH\alpha}$ and FWHM of the:
 1. spectral energy distribution (SED)?
 2. broad and narrow emission line EW?
 3. BPT Position (narrow emission line ratios)?
Most low luminosity Type 1 Seyferts are 1.5-1.9
Are all partially obscured, or is it the NLR covering factor?
Outline

A. The new Broad Hα selected sample

B. What is the dependence on $L_{bH\alpha}$ and FWHM of the:
 1. spectral energy distribution (SED)?
 2. broad and narrow emission line EW?
 3. BPT Position (narrow emission line ratios)?
BPT Position of BLR selected AGN

Type-2 AGN: Kewley et al. 06, Kauffmann et al. 03 (Background)
BPT Position of BLR selected AGN

Luminosity Dependence

low $L_{bH\alpha}$. . high $L_{bH\alpha}$

![Graph showing the BPT diagram for AGN, Seyfert, and LINER types with low and high luminosity.](image-url)
BPT Position of BLR selected AGN

Broad Hα FWHM Dependence

NLS1s . . Very broad lines
BPT Position of BLR selected AGN

\[
\frac{L}{L_{\text{Edd}}} \text{ Ratio Dependence}
\]

low \(\frac{L}{L_{\text{Edd}}}\) \ldots high \(\frac{L}{L_{\text{Edd}}}\)
Main Results and Possible Implications

A new sample of low luminosity Type-1 AGN (publicly available soon).

1. AGN with 10^{44} erg s$^{-1} < L_{\text{Bol}} < 10^{46.5}$ erg s$^{-1}$ have:
 I. A fixed mean-SED shape, scales with $L_{b\text{H}\alpha}$.
 An optically thick accretion disk and constant BLR covering factor?
 II. Mean host galaxies similar to mean inactive galaxies.

2. EW (NLR) increases with decreasing luminosity.
 Most Seyferts 1.5-1.9 probably differ from Sey’ 1.0 in NLR covering factor

3. BPT classification of T1-AGN:
 9% Composites, 1% SF, 3% LINERs
 I. Change in mean position with L. *Change in ionization parameter?*
 II. AGN at $\log L/L_{\text{Edd}} \approx -2.5$ are LINERs.
 Change in ionizing continuum?
 III. NLS1s have low [OIII]/narrow Hβ and low [NII],[SII],[OI]/narrow Hα. *Change in ?*