Max-Planck Institut für Astronomie

Roberto Decarli BH masses in HLS1: The role of the Broad L Region geometry

M. Dotti (MPA, Univ Bicocca) A. Treves (Univ Insubria) F. Haardt (Univ Insubria) S. Zibetti (DARK)

NLS1 Workshop – Milano, April 6th, 2011

Broad line region of blazars

Broad line gion of blazars

Clues from NLS1 statistics

Continuous trends from "normal" Sey1 to NLS1 Blazar-like properties of some NLS1 nuclei: CSS radio emission (Dawei Xu's talk), polarization (Marcello Giroletti's talk), GeV emission (Luigi Foschini's talk), variability (various Tuesday talks)...

Do NLS1 have flat BLR seen pole-on?

NLS1 are ~ 15% of the "normal" Seyfert 1 15% of the solid angle => $\vartheta_c \approx 18 \deg$

 $2\sqrt{\sin^2\vartheta+(H/R)^2}$

$$\vartheta < \vartheta_{c}: \langle f \rangle = 2.5 - 3.8$$

$$\vartheta_{c} < \vartheta < \vartheta_{max} : < f > = 1.0$$

See also T. Fischer's poster and M. Crenshaw's talk!

Sey1

 $oldsymbol{\vartheta}_{\mathsf{max}}$

NLS1

 $\boldsymbol{\vartheta}_{\mathsf{c}}$

A cosmic conspiracy?

Once corrected for the new geometrical factor: $M_{\rm BH}$ are consistent with the $M_{\rm BH}$ - σ_* $L/L_{\rm Edd}$ are also consistent with those of normal Seyfert 1

Broad line region of blazars

The realm of small inclination angles

Jet pointing towards us, i.e., small ϑ

 $\sin^2 \vartheta + (H/R)$

We select BL Lac, Blazars and quasars with detected broad lines and resolved host galaxies

see also Vestergaard & Peterson (2006)

$M_{\rm BH}$, f, FWHM & EW

• Virial *M*_{BH} in blazars are systematically smaller than in QSOs

$M_{\rm BH}, f, FWHM \& EW$

• Virial *M*_{BH} in blazars are systematically smaller than in QSOs

• *f* is anti-correlated to the FWHM

 Blazars (and BL Lac objs in particular)
have systematically
higher *f* and smaller
FWHM than QSOs

$M_{\rm BH}$, **f**, FWHM & EW

• Virial *M*_{BH} in blazars are systematically smaller than in QSOs

f is anti-correlated to the FWHM

 Blazars (and BL Lac objs in particular)
have systematically
higher *f* and smaller
FWHM than QSOs

f also depends on the line EW

$M_{\rm BH}$, f, FWHM & EW

Broad line gion of blazars

Quasar host from stacking of SDSS images

 $M_{\rm BH} \sim 2 \ 10^9 \, {\rm M_{\odot}}$

We study quasar host galaxies from stacked SDSS images in *griz*

~ 45,000 quasars at 0.3<z<1.3

1 TB of processed data

Stacked quasar images, stacked stars, net images, galfit fits

The M_{BH}/M_{host} relation at z>0

The virial BH masses are only mildly correlated to the host galaxies!

But the relation SHOULD be in place at 0.3<z<0.4...

What breaks the $M_{\rm BH}/M_{\rm host}$ relation?

FWHM vs M_{host}

Increasing the FWHM by a factor 7, M_{host} changes by a factor < 2!

Is FWHM by itself a **poor** tracer of M_{BH}?

Orientation?

FWHM vs Luminosity vs L_{host}

FWHM vs Luminosity vs L_{host}

We bin in blocks of similar FWHM and line luminosity

FWHM vs Luminosity vs L_{host}

We bin in blocks of similar FWHM and line luminosity

The virial grows towards the topright corner

The stacked host luminosity is almost constant

Conclusions

A geometrical factor f > 1 is expected for disk-like BLR

This could affect the virial mass estimates in pole-on systems, in particular yielding:

the " M_{BH} deficit" and the unusually high L/L_{Edd} in NLS1 the deviation from the M_{BH}/M_{host} relation in blazars the lack of correlation between FWHM and L_{host} in low-z quasars from stacking

CAVEATS:

- 1) All these are purely *demographic* approaches
- We assumed the M_{BH}-host galaxy relations to be valid for all the AGN

 We don't have any prediction on X-ray, radio, host galaxy SF (see Sani and Orban de Xivry's talks), etc