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Measuring Central Black-Hole Masses
• Virial mass measurements based on motions 

of stars and gas in nucleus.
– Stars

• Advantage: gravitational forces only
• Disadvantage: requires high spatial resolution

– larger distance from nucleus  less critical test

– Gas
• Advantage: can be observed very close to nucleus, high 

spatial resolution not necessarily required
• Disadvantage: possible role of non-gravitational forces 

(radiation pressure)
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Direct vs. Indirect Methods
• Direct methods are based on dynamics 

of gas or stars accelerated by the 
central black hole.
– Stellar dynamics, gas dynamics, 

reverberation mapping
• Indirect methods are based on 

observables correlated with the mass of 
the central black hole.
– MBH –* and MBH –Lbulge relationships, 

fundamental plane, AGN scaling 
relationships (RBLR –L)
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“Primary”, “Secondary”, and 
“Tertiary” Methods

• Depends on model-dependent assumptions 
required.

• Fewer assumptions, little model dependence:
– Proper motions/radial velocities of stars and 

megamasers (Sgr A*, NGC 4258)
• More assumptions, more model dependence:

– Stellar dynamics, gas dynamics, reverberation 
mapping

• Since the reverberation mass scale currently depends on 
other “primary direct” methods for a zero point, it is 
technically a “secondary method” though it is a “direct 
method.”
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Virial Estimators

Source Distance from 
central source    

X-Ray Fe K 3-10 RS 
Broad-Line Region 200104 RS 
Megamasers 4 104 RS 
Gas Dynamics 8 105 RS 
Stellar Dynamics 106 RS 

 

 
In units of the Schwarzschild radius 
RS = 2GM/c2 = 3 × 1013 M8 cm .

Mass estimates from the
virial theorem:

M = f (r V 2 /G)
where
r = scale length of

region
V = velocity dispersion
f = a factor of order 

unity, depends on
details of geometry
and kinematics
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Reverberation Response of an 
Emission Line to a Variable Continuum

The relationship between the continuum and emission 
can be taken to be:

Velocity-resolved 
emission-line

light curve

“Velocity- 
delay map”

Continuum
light curve

Arp 151
LAMP: Bentz et al. 2010

Velocity-delay map is observed line 
response to a -function outburst

( , ) ( , ) ( )L V t V C t d    



Emission-Line Lags
• Because the data requirements are relatively modest,
it is most common to determine the cross-correlation 
function and obtain the “lag” (mean response time):

CCF( ) = ( ) ACF( - ) d      



A New Reverberation 
Methodology

• Statistical modeling of 
light curves can be used 
to fill in gaps with all 
plausible flux values.
– Based on statistical 

process modeling
Press, Rybicki, & Hewitt (1992) 
Rybicki & Press (1992) 
Rybicki & Kleyna (1994)

– “Stochastic Process 
Estimation for AGN 
Reverberation” (SPEAR)

• A likelihood estimator 
can be used to identify 
the most probable lags.

Zu, Kochanek, & Peterson 2011
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• Uncertainties are 
computed self- 
consistently and 
included in the 
model.

• Trends, correlated 
errors are dealt 
with naturally.

• Can simultaneously 
fit multiple lines 
(which effectively 
backfill gaps in the 
time series).

NGC 3516 in 1990
LAG: Wanders et al. 1993
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Results are in good agreement with results from 
CCF and formal errors are somewhat smaller.
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Reverberation 
Mapping Results

• Reverberation lags 
have been measured 
for nearly 50 AGNs, 
mostly for H, but in 
some cases for 
multiple lines.

• AGNs with lags for 
multiple lines show 
that highest 
ionization emission 
lines respond most 
rapidly  ionization 
stratification



A Virialized 
BLR

• V 
 

R –1/2 for 
every AGN in 
which it is testable.

• Suggests that 
gravity is the 
principal dynamical 
force in the BLR.
– Caveat: radiation 

pressure! (Marconi 
talk this afternoon)

Peterson & Wandel 2002

Mrk 110

Kollatschny 2003

Bentz et al. 2009
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Reverberation-Based Masses
• Combine size of BLR with 

line width to get the 
enclosed mass:

M = f (ccent  2 /G)
• Without knowledge of the 

BLR kinematics and 
geometry, it is not possible 
to compute the mass 
accurately or to assess 
how large the systematic 
errors might be.
– Low-inclination thin disk (f 

 1/sin2 i ) could have a huge 
projection correction.
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The AGN MBH –* Relationship
• Assume slope and zero 

point of most recent 
quiescent galaxy 
calibration.
f 

 
= 5.25 ± 1.21

Woo et al. 2010

• Maximum likelihood 
places an upper limit on 
intrinsic scatter        
log MBH ~ 0.40 dex.
– Consistent with 

quiescent galaxies.
Woo et al. (2010)

(Woo talk this afternoon)

3C 120
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Is the NLS1 Phenomenon an 
Inclination Effect?

• Probably not exclusively.
• Test case: Mrk 110

– An NLS1 with an 
independent mass estimate 
from gravitational redshift 
of emission lines 
(Kollatschny 2003):

M* = 4.8 
 

106 M

Mrev = 25 (±6) 
 

106 M

Mgrav = 14 (±3) 
 

106 M

Mrk 110
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The AGN MBH –Lbulge Relationship
• Line shows best-fit to 

quiescent galaxies
• Maximum likelihood 

gives upper limit to 
intrinsic scatter       
log MBH ~ 0.17 dex.
– Smaller than 

quiescent galaxies 
(log MBH ~ 0.38 dex).
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Stellar and gas dynamics requires resolving the black hole radius of influence r*

Quiescent galaxies            RM AGNs



Black Hole Mass Measurements 
(units of 106 M

 

)
Galaxy NGC 4258 NGC 3227 NGC 4151
Direct methods:
Megamasers 38.2 ± 0.1 N/A N/A
Stellar dynamics 33 ± 2 7–20 < 70
Gas dynamics 25 – 260 20+10

-4 30+7.5
-22

Reverberation N/A 7.63 ± 1.7 46 ± 5

Quoted uncertainties are statistical only, not systematic.

References: see Peterson (2010) [arXiv:1001.3675]
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Masses of Black Holes in AGNs
• Stellar and gas dynamics 

requires higher angular 
resolution to proceed further.
– Even a 30-m telescope will not 

vastly expand the number of AGNs 
with a resolvable r*.

• Reverberation is the future path 
for direct AGN black hole 
masses.
– Trade time resolution for angular 

resolution.
– Downside: resource intensive.

• To significantly increase 
number of measured masses, 
we need to go to secondary 
methods.
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BLR Scaling with Luminosity

2
HH

24
)H(

rn
L

cnr
QU 


• To first order, AGN 
spectra look the same

 Same ionization
parameter U

 Same density nH

r 
 

L1/2
SDSS composites, by luminosity

Vanden

 

Berk

 

et al. (2004)
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BLR Radius-Luminosity 
Relationship

• R 
 

L½ 

relationship was 
anticipated long 
before it was 
well-measured. 

Koratkar & Gaskell 1991



NGC 4051
z = 0.00234

log Lopt = 41.8

Mrk 79
z =0.0222 

log Lopt = 43.7

PG 0953+414
z = 0.234

log Lopt = 45.1

Reverberation experiments use large spectrograph
apertures for accurate spectrophotometry.
This results in significant starlight contribution to 
the measured optical luminosity.

Images courtesy of M. Bentz
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Progress in Determining the 
Radius-Luminosity Relationship

Original PG + Seyferts
(Kaspi et al. 2000) 

2

 

7.29
R(H) L0.76

Expanded, reanalyzed 
(Kaspi et al. 2005) 

2

 

5.04
R(H) L0.59

Starlight removed 
(Bentz et al. 2009)

2

 

4.49
R(H) L0.49



Phenomenon: Quiescent
Galaxies

Type 2
AGNs

Type 1
AGNs

Measurement of Central Black Hole Masses

Direct
Methods:

Stellar, gas
dynamics

Stellar, gas
dynamics

MegamasersMegamasers 1-d
RM
1-d
RM

2-d
RM
2-d
RM

Fundamental
Empirical
Relationships:

MBH – * AGN MBH – *

Indirect
Methods:

Fundamental
plane:

e , re  * 
 MBH

[O III] line width
V  *  MBH

Broad-line width V
& size scaling with

luminosity
R 

 

L1/2  MBH

Application:
High-z AGNsLow-z AGNs

BL Lac 
objects



Black Hole Mass Measurements 
(units of 106 M

 

)
Galaxy NGC 4258 NGC 3227 NGC 4151
Direct methods:
Megamasers 38.2 ± 0.1 N/A N/A
Stellar dynamics 33 ± 2 7–20 < 70
Gas dynamics 25 – 260 20+10

-4 30+7.5
-22

Reverberation N/A 7.63 ± 1.7 46 ± 5
Indirect Methods:
MBH –* 13 25 6.1
R–L scaling N/A 15 29 –120

References: see Peterson (2010) [arXiv:1001.3675]
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Black Hole Masses
• All direct methods have systematic 

uncertainties at the factor of 2 level (at least!).
– NGC 4258 (megamasers) and Galactic Center are 

exceptions
• Ignoring zero-point uncertainties, the 

prescriptions for AGN masses are probably 
believable at the 0.5 dex level.

• If we desire higher accuracy, many difficulties 
appear.
– e.g., should we characterize line widths by FWHM 

or line dispersion?
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Implications for NLS1s

NLS1s: high NLS1s: high m,
but low L

.
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Implications for NLS1s
• Let’s suppose that quasars are self- 

similar and the physics is captured by 
the Eddington rate:
– Virial equation:
– R–L relationship:
– Definition of Eddington ratio:

 1 2
BH BLRV M r 
1 2

BLR AGNr L

Edd BHm M M M M   

1 2 1 2 1 4
BH BH BH

1 2 1 2
AGN

M M MV mL M
                   

Also see poster by Dultzin
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Implications for NLS1s

• Objects with the same 
physics have (slightly) 
broader lines with 
increasing black hole 
mass.

• Define (arbitrarily) a 
mass-dependent 
definition of high 
Eddington rate (HER) 
objects.

1 4
BHMV m

    
 

1 4

1BH
HER 7 2000 km s

10
MV

M
 

   
 
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Implications for NLS1s
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Implications for NLS1s
• Many spectral 

properties of AGNs 
are correlated as 
shown by PCA.
Boroson & Green (1992)

• One of these 
properties is H

 profile.
• NLS1s constitute an 

extreme of PC1.

Boroson 2001
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Characterizing Line Widths
FWHM:


 

Trivial to measure


 

Less sensitive to blending 
and extended wings

Line dispersion line :


 

Well defined


 

Less sensitive to narrow-line 
components



 

More accurate for low-contrast lines

  2
0

22
0

2
line /     dPdP


line

FWHM


6 2/1)2ln2(2 32 22
2.45 2.833.462.35

Some
trivial

profiles:
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H
 

Profiles in NLS1s 
Have Low Values of 

FWHM/line
• This matters 

because their black 
hole masses 
depend on the line 
width measure 
(squared!).

• Systematically shifts 
NLS1s away from 
other AGN masses.
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Incorrect Choice Introduces Bias 
Based on Line Width

• The importance of this 
is that the masses are 
shifted systematically
– In this case, the high- 

Eddington rate objects 
have smaller masses for 
FWHM than for line

• Leads to incorrect BH 
mass function and other 
troubles...
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Line Dispersion line

• So why hesitate in declaring line the winner?
• For H, line is underestimated due to contamination 

by He II 4686.
• This effect is small compared to real change with line 

width.
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The Sub-Eddington Limit

Steinhardt & Elvis 2010

• The most massive 
black holes seem to be 
unable to approach the 
Eddington limit.
Steinhardt & Elvis 2010

• Line widths used were 
from Gaussian fits to 
broad emission lines.
Shen, Greene, et al. 2008
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Rafiee & Hall 2011

The sub-Eddington limit vanishes when the masses
are based on line measured directly from the spectra
instead of FWHM from a Gaussian fit.

line -based FWHM-based
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New Reverberation 
Results on Mrk 335

• Exceptionally broad 
(FWHM ~ 5000 km s-1 

He II in RMS spectra) is 
characteristic of NLS1s
– Easy to see in RMS 

spectrum because while 
Fe II varies, it doesn’t 
reverberate.

– Line dispersion line can be 
measured pretty cleanly in 
the rms spectrum because 
of less blending than in 
mean spectrum.

Grier et al. in prep
See poster by Grier

Speaking of line …
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New Reverberation 
Results on Mrk 335

• For the first time, time 
resolution good enough 
to measure response of a 
high-ionization line (He II 
4686) in an NLS1. 
Preliminary values:
– 

 
= 2.6 

 
0.8 days

– 
 

= 2716 
 

50 km s-1

Grier+ in prep
See Grier poster

MBH (He II) = (1.99 
 

0.62)×107M

MBH (H) = (1.44 
 

0.37)×107M
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Higher Precision Masses
• AGN mass scale currently relies heavily on correlations 

between MBH and host-galaxy properties.
• Larger sample sizes, higher-quality data lead to new 

questions, many of which will be addressed by today’s 
speakers.
– Are MBH -host correlations the same in AGNs and quiescent 

galaxies? How reliable are scaling relations over L and z ?
– Are MBH -host correlations the same in NLS1s and other AGNs? 
– Does failure to account for radiation pressure lead us to 

underestimate MBH ?
• NLS1s are the testing ground for this!

– What problems do we encounter using different emission lines to 
determine MBH ?

– How can we resolve the inclination/Eddington rate ambiguity in 
NLS1s? Is there a line-width parameter that is unbiased with 
respect to these?

– Are there other systematic effects that are important?
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…which leads us back to 
reverberation mapping.

Reverberation mapping remains
our best hope for obtaining
reliable black hole masses
locally and over cosmic time.
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Brad’s gripe du jour:
• Estimating masses from the R–L relationship 

and line widths is sometimes erroneously called 
the “Dibai method.”

• Dibai (1977 Soviet Astronomy, 3, 1) argument:
– AGN emission lines have equivalent widths 

independent of luminosity
– Assume constant line emissivity per unit volume 
– Implied relationship between BLR size and AGN 

luminosity
– Apply virial theorem for mass

• Physics wrong, dependence on L incorrect, and 
incorrectly ascribes credit
– Kris Davidson seems to have been the first to have 

understood the implications of the ionization 
parameter as a predictor of the BLR size.

line contL L

3
line BLR

4
3

L R    
 
1 3

BLR contR L
2 1 3

BH line contM V L 
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