

Long-term AGN variability

Richard Saxton

Giovanni Minuitti Andrew Read Pili Esquej

Long-term AGN variability

Short-term X-ray variability

McHardy et al. 2004

McHardy et al. 2006

What about long-term variability, beyond the characteristic timescale?

Long-term AGN variability

ROSAT

RASS and ROSAT pointed observations

RASS - median flux limit = 3E-13 ergs/s/cm2 - observations in 1990

ROSAT pointed: 25% of sky, flux limit typically few x E-14 cgs obs from 1991 – 1998.

Long-term AGN variability

XMM-Newton slew

Flux limit of 6x10⁻¹³ ergs/s/cm2

Comparison made with 35% of sky covered – now 51%

Observations from 2001 - 2009

Demography

Probing principally 10⁴²<Lx<10⁴⁶ 0.03<z<2.0

NLS1- Milan, April 4 2011

Long-term AGN variability

AGN combination

Overlap with 1038 AGN with detection in both instruments or detection in one and a useful upper limit in the other.

Compare flux over a baseline of 3 – 19 years (mostly 11-19 years)

Long-term AGN variability

Variability

Median flux variability of ~80%

Long-term AGN variability

Variability v Luminosity (0.2-2 keV)

No correlation of variability with X-ray luminosity on these timescales

Long-term AGN variability

Variability with source type

Long-term AGN variability

High variability sources

É

CLASS	<u>NSRC</u>	<u>V>10</u>
ALL	717	4.9±0.8%
S1	220	4.1±1.4%
S1.2	36	0.0%
S1.5	60	3.3±2.4%
S1.8/9/2	30	13.3±6%
NLS1	49	4.1±2.9%
QSO	124	4.8±2.0%
BLAZAR	116	3.4±1.7%

V>10, beyond the limit of ordinary disk / comptonisation variations. What fraction have this ?

Four high variablity S 1.9 / 2 have:

 $L_x = 2, 3, 6, 18 \times 10^{42} \text{ ergs/s}$

Change in obscuration ?

- Mass addition ?
- Disk state change ?

Soft flare from GSN 069

July 2010 - XMM slew source found with F_{0.2-2kev} =3E-12 ergs/s/cm⁻²

Very soft spectrum (15 photons)

Factor 200 higher than ROSAT upper limit; coincident with GSN 069

Long-term AGN variability

GSN 069 – optical spectrum (6DF)

Clearly a Seyfert 2 - line widths are <200 km/s z=0.01816

L_{BOL_[OIII]}= 10⁴² ergs/s

GSN 069 – X-ray light curve

Monitoring with SWIFT and XMM-Newton

GSN 069 – precedents

Variability matched by PHL 1092 (Minuitti et al. 2009)

GSN 069 – X-ray spectrum (SWIFT)

Simple spectral fit TBABS*ZTBABS*BBOD -> kT=33+/-2 eV; NH=3+/-1 x10^21

Unlikely to be Sy II due to absorption unless very dusty absorber which the Balmer decrement argues against.

Long-term AGN variability

Reasons why unlikely to be absorption:

- -Soft X-ray spectrum
- NH, very low -> low column
- Balmer decrement (5) -> not too much dust
- Coincidence to have hole in absorbing

screen and a super-soft spectrum

Hawkins 2004

9

GSN 069 – X-ray spectrum (XMM)

PN=72.5±1.5 eV MOS1=69+5-3 eV MOS2=64±3 eV RGS=67<u>±6 eV</u>

X²=1.05 / 106 dof

counts s⁻¹ keV⁻¹ 0.1 0.01 normalized 10.3 104 10.5 0.2 0.5 2 5 10 1 Energy (keV)

10ks XMM TOO - Power-law fit – slope=9.5 – bad fit

(DISKBB(71.5±1.eV) + PLAW) * EDGE(644+16/-8 eV, Tau=1.4) * N_{H,Gal} L₂₋₁₀=10⁴⁰ ergs/s; $L_{0.2-2}=4.6\times10^{-12} = 5\times10^{42}$; L_{bol}~10⁴³ L_{bol} / Lx ~1000

GSN 069 – X-ray edge

If OVII, inflow of 0.1c

(DISKBB(71.5±1.eV) + PLAW) * EDGE(644+16/-8 eV, Tau=1.4) * N_{H,Gal}

Infer $M_{BH} = 1.2-5.2 \times 10^{5}$ from spectral modelling (assuming X-ray flux is thermal emission from the accretion disk)

M_{BH}=1.1-2.5x10⁶ from K band flux (Marconi & Hunt 2004)

Bolometric luminosity changed from ~10^42 (from [OIII] emission) to ~10^43 from the XMM spectrum.

Assuming $M_{BH} = 2 \times 10^{6}$, Mdot has changed from 0.004 to 0.04

This is not a flare (e.g. tidal disruption, as the X-ray flux is too constant over 5 months).

Changed from RIAF to thin disk?

GSN 069 – disk scenario

Trump et al. 2011

Changed from inefficient to efficient accertion; disk has moved in and is emitting thermally in soft X-rays. Comptonisation region squashed ?

Optical line widths

Following Nicastro 2000, outflow = BLR scenario, source should now have L/ L_{edd} large enough to produce an outflow and form a BLR. We would expect the line widths to now be ~1500 km/s from McHardy et al. 2006.

The BLR distance should be ~10 light days for Lbol~10^43 (Denny et al. 2010). So if expansion velocity is 1000 km/s; we might expect to see a BLR building up after ~1 year.

AAT spectrum Oct 2010

Nothing yet but continue monitoring

XMM light curve

Very variable, factor 2 in 1000s, hence seeing direct emission, not hole in absorption screen. Compatible with small BH mass

Long-term AGN variability

GSN 069 – long-term optical LC

Something has happened to the disk – less optical flux now but more X-rays. Shift of big-blue bump to higher temperatures ?

Long-term AGN variability

Scenario

Conclusions

- High variability occurs in all source classes. Sy2 may be disproportionally represented.
- GSN069 (a Sy2) shows large variability and is v. soft in Xrays
- Looks like a 'true-Sy2' without a BLR
- Looks to have changed its effective disk temperature
- Where are the hard X-rays ?
- What is causing the edge at 650 eV ?
- Will it form a BLR in time ?