X-ray reverberation in NLS 1 Lance Miller (Oxford)

Jane Turner (UMBC) James Reeves (Keele) Valentina Braito (Leicester) Andrew Lobban (Keele) Stuart Sim (MPA) Knox Long (STScl) Daniel Proga (Nevada) Steve Kraemer (Catholic) Mike Crenshaw (Georgia)

reverberation

- reverberation between optical/UV continuum and optical emission lines is principal method of BH mass measurement in AGN (Peterson, Bentz, Denney tomorrow).
- in our analysis we consider how individual Fourier modes behave

gappy, noisy time-series

NGC 4051 optical: Denney et al 2009

time series are both "gappy" and noisy

developed maximum-likelihood analysis based on CMB methods
 immune to gaps, accounts for shot noise, rigorous error estimation
 only method that accounts for covariance in Fourier domain

reverberation Fourier analysis

optical (H β) reverberation in NGC 4051 (Denney et al 2009)

- at X-ray energies not enough counts to separate lines and continuum on short timescales.
- measure reverberation between continua in different broad X-ray bands: hard X-rays are Compton-scattered; soft X-rays are absorbed
 key difference with optical reverberation: we measure signals where the reflected and direct components are mixed together. Both bands can contain scattered light.

X-ray reverberation in NLS1

- Lags known for 10 years but not previously recognized as reverberation
- Primarily detected in highly-variable NLSI
- Dependence on frequency as expected from reverberation

X-ray reverberation: energy dependence

Dependence on photon energy as expected from scattering

by X-ray opaque material

E f(E)/ 10⁻³

NGC 4051

10

E /keV

- photon energy of the bands being crosscorrelated.
- compare the required reflection fractions with the "scattered-light" component seen in the spectral analysis (top right).

Time lags in 1H0707-495

Fabian et al. (2009); Zoghbi et al. (2010, 2011)

- Negative lags at high V ie SOFT band lags Medium
 band
- Claimed to indicate that soft band contains significant reflection, supposed to arise from strong Fe L-shell line emission at ~0.9 keV from reflector few 10s light-s away
- "Relativistic blurring" spectral model fit requires strong GR blurring r_{in}=1.23 r_g emissivity ~ r⁻⁷
- Positive lags at low frequency attributed to different mechanism (see later)

lags: "medium"1-4 keV v. "soft" 0.3-1 keV

Zoghbi et al. 2010 model (Z10)

New measurements of 1H0707-495

v/Hz

v/Hz

From the Z10
spectral model, the hard 4-7.5 keV band
should contain
larger fraction of
reflection than the
softer bands and
hence should be the
most lagged.

 High v lags should be positive if Zoghbi et al are correct.

• They are not!

Miller, Turner, Reeves & Braito, 2010

Confidence Regions for the Lags

problems with light bending

•light-bending model was invented to fix the problems of the relativistic-blurred models (R>>1, $\epsilon \sim r^{-7}$, lack of response of line to continuum).

requires a small source close to the black hole (~1 rg) moving vertically

up and down (mechanism?).no a priori expectation of this.

where is the continuum source and its variations produced? It can't be both in the accretion disk and in the "lamp-post" source.

positive lags from fluctuations propagating inwards over the surface of the accretion disk from soft to hard regions?

X-ray reverberation: 1H0707-495

Miller, Turner, Reeves & Braito 2010

(over-)simple top-hat reverberation transfer functions easily fit lag spectra
 Size of the reverberating region ~2000 light-seconds

- 20-100r_g if $M_{BH} = 10^7 M_{\odot}$ (Leighly 2004) or $2 \times 10^6 M_{\odot}$ (Zoghbi et al 2010)
- \bigcirc The soft band also needs time lag ~150s coupled with 2000s hard-band lags
 - no requirement for reflection physically close to the BH
 - difference between hard & soft caused by energy-dependent opacity
 - the hard-band FeK region cannot be dominated by short timescale lags
 - short lags may also arise in transfer function of primary source

Summary

- Reverberation predicts clear signatures in Fourier lag spectra which are observed in both optical and X-ray AGN/NLSI time series.
- We see both the expected frequency behaviour and energy behaviour in X-ray data.
- Source.
 Source
 <
- Simple X-ray reverberation explains BOTH small negative lags and large positive lags with a single, simple physical model.
- Solution Next aim to measure time lags in Sim et al radiative transfer code.
- We are not seeing a naked accretion disk. Both timing and spectroscopic results independently show that X-rays are reprocessed by large amounts of circumnuclear gas with high global covering, >40 percent, often seen in absorption, likely outflowing (see Jane Turner's talk).