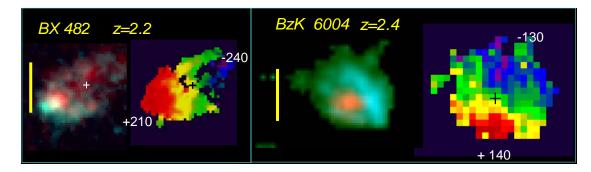


Cosmic Evolution of NLS1s and the Growth of their Black Holes

Richard Davies¹,

G. Orban de Xivry¹, M. Schartmann¹, S. Komossa¹, A. Marconi², E. Hicks³, H. Engel¹, L. Tacconi¹, R. Genzel¹

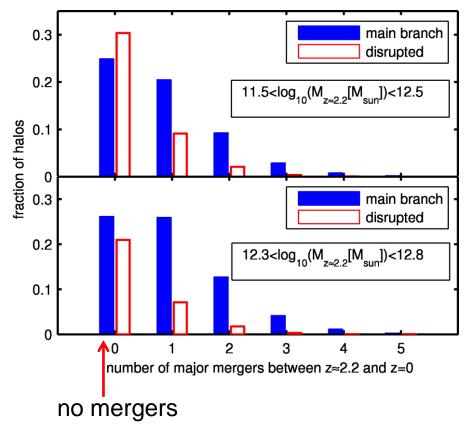

¹ Max Planck Institute for Extraterrestrial Physics, Germany
 ² Università di Firenze, Italy,
 ³ University of Washington, USA

The bulges and BHs of NLS1s have grown purely through secular processes without mergers.

- Is such a population of galaxies expected?
- How long have their bulges & black holes been growing?
- Are their black holes in a special phase of growth?
- Do NLS1s lie on the M_{BH} - σ relation?

A population of galaxies that have evolved without mergers

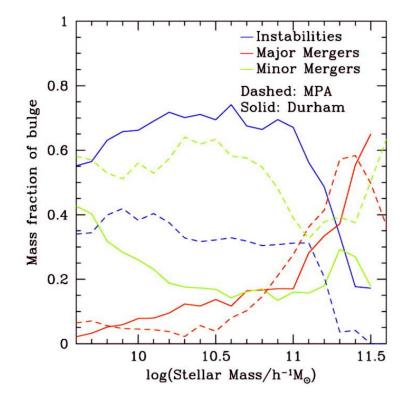
Genzel+ 08: can see bulges starting to grow at z ~ 2


Genel+ 08:

fate of DM halos with masses 11.5 < log $M_{z=2.2}$ < 12.8 from z = 2.2 to z = 0 based on Millenium Simulation

~40% are subsumed into a larger halo
~35% undergo a major merger
~25% experience no major mergers

Genel+ 10:


minor mergers (mass fraction < 1/10) and smooth accretion account for ~70% of DM halo growth

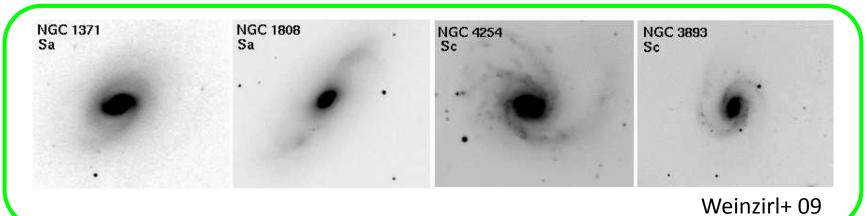
A population of galaxies that have evolved without mergers

Parry+ 09

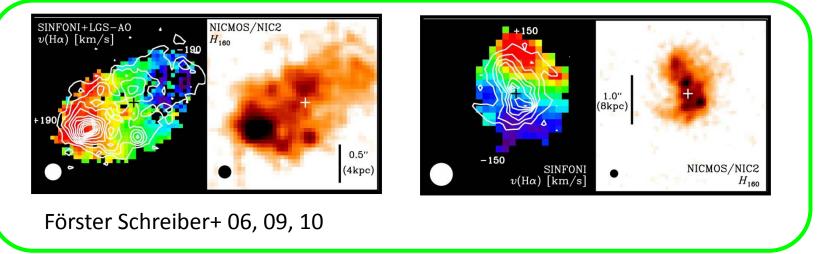
- Major mergers are *not* the primary mechanism by which most spiral bulges assemble their mass.
- The overwhelming majority of spirals never experience a major merger
- Most spiral bulges acquire their stellar mass through minor mergers or disc instabilities.

Questions and Answers

The bulges and BHs of NLS1s have grown purely through secular processes without mergers.

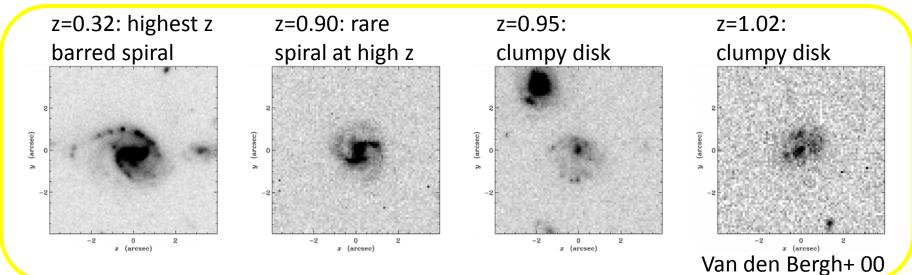

Is such a population of galaxies expected?

Yes – half or more of spiral bulges grow without major mergers

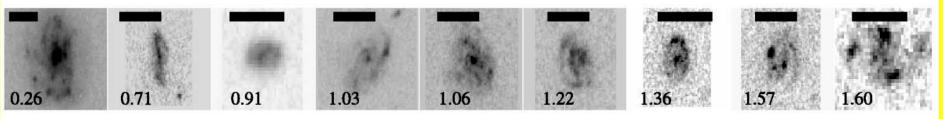

- How long have their bulges & black holes been growing?
- Are their black holes in a special phase of growth?
- Do NLS1s lie on the M_{BH} - σ relation?

When did the Hubble Sequence form?

Local disks usually have prominent bulges and smooth spiral arms



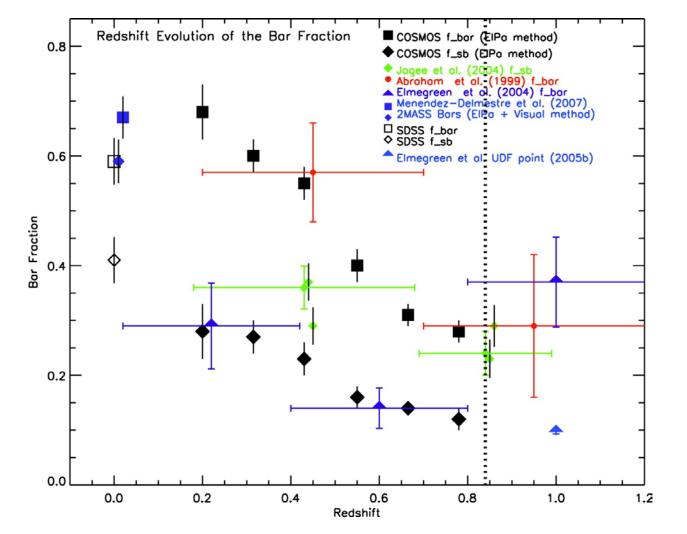
Disk galaxies at z~2 are turbulent and clumpy, and often lack a bulge



When did the Hubble Sequence form?

Disk galaxies at z~1 begin to show characteristics of the local Hubble SequenceVan den Bergh+ 00, Kajisawa+ 01HDF NorthConselice+ 04GOODS SouthOesch+ 10COSMOS

'Luminous Diffuse Objects': proto-disks without prominent bulges



Conselice+ 04

When did bars become common?

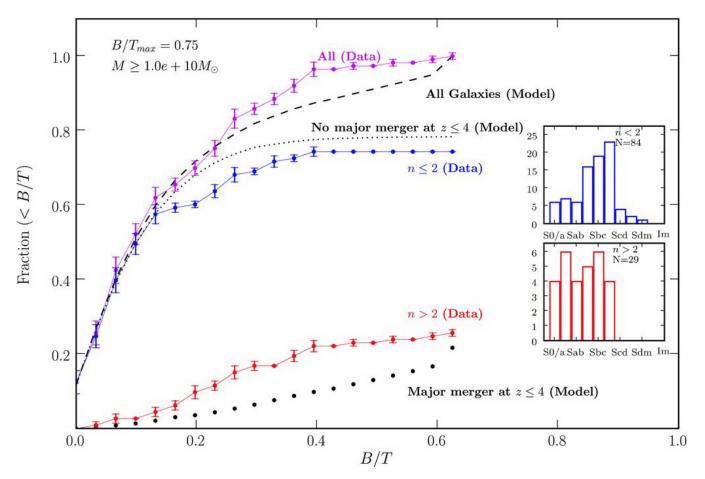
- Fraction of bars and strong bars decreases with redshift
- Rate of decreases is slower for massive, luminous spirals
- Bars can be traced to z~1

Sheth+ 08 from COSMOS

Questions and Answers

The bulges and BHs of NLS1s have grown purely through secular processes without mergers.

Is such a population of galaxies expected?


Yes – half or more of spiral bulges grow without major mergers

- How long have their bulges (& black holes) been growing?
 Since z~1, when Hubble sequence was in place and bars became common
- Are their black holes in a special phase of growth?
- Do NLS1s lie on the M_{BH} - σ relation?

What fraction of local spirals are like NLS1 hosts?

Weinzirl+ 09

- Bulges built via major mergers fail to account for the bulges present in \sim 66% of high mass spirals.
- Most of these present-day B/T<0.2 bulges are likely to have been built by minor mergers and/or secular processes

How common are NLS1s? What is their duty cycle?

Osterbrock 88, Williams+ 02, Crenshaw+ 03, Zhou+ 06

- ~15% of Seyfert 1s are NLS1
- probably this fraction is also applicable to Seyfert 2s;
 & perhaps also intermediate types in which AGN is weak or obscured.

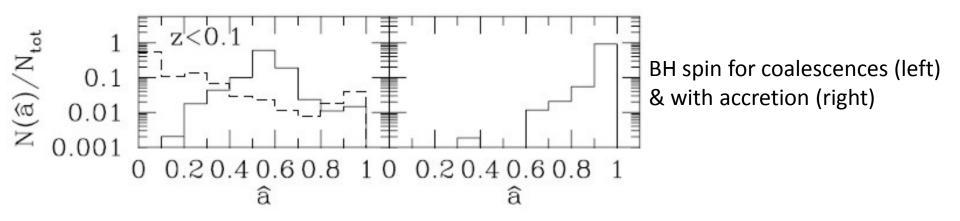
Ho 08

- essentially all local galaxies have detectable nuclear emission lines
- ~11% are Seyferts and ~43% can be considered AGN

> up to 2-6% of local galaxies could be (similar to) NLS1s

Weinzirl+ 09

• about 2/3 of local disk galaxies are similar to NLS1 hosts

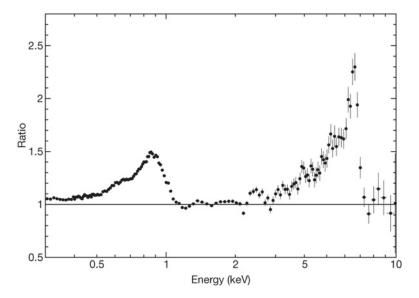

➤ the duty cycle is ~ 3-10%

Radiative Efficiency & Black Hole Spin

Volonteri+ 05

- Major mergers increase BH spin; many minor mergers spins BHs down
- These effects cancel out in BH growth via mergers
- Gas accretion from a thin disk spins BHs up:

70% of BHs are maximally rotating and have radiative efficiencies approaching 30%

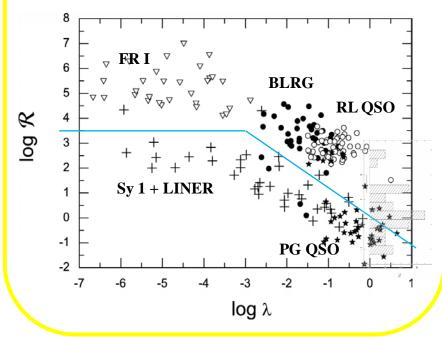


This implies the BHs of NLS1s should have high spin

Black Hole Spin: Observational Evidence?

Fabian+ 09

- relativistic Fe lines in NLS1 1H 0707-495
- continuum/line reverberation lag


- need large number statistics, but first indications are positive
- 12 of 15 NLS1s in literature have a>0.6 (Gondoin+02, Brenneman+07, Miniutti+09, Fabian+09, Ai+10)

Vasudevan+ poster

highest T of accretion disk depends on inner radius, related to BH spin

Sikora+ 07

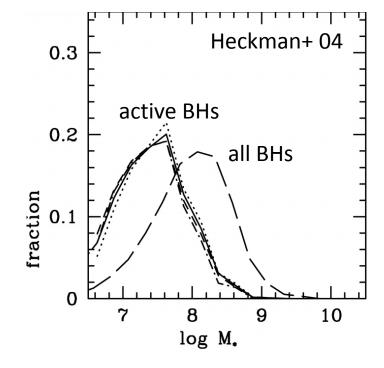
speculate RQ/RL depends on BH spin; *R* for NLS1s from Komossa+ 06

Past Black Hole Growth

look-back time to z=1: t=7.7 Gyr duty cycle for NLS1s: δ =3-10%

BHs have actively accreted for t δ =230-770 Myr

$$M_{BH}(t) = M_{seed} \exp\left(\frac{1-\epsilon}{\epsilon}\frac{t\delta}{t_E}\right)$$


Assume BHs: - are accreting at Eddington rate, $t_E \sim 440$ Myr - are spinning fast & so have high radiative efficiency, $\epsilon \sim 0.2$

- have seed mass $10^4 \ M_{sun}$

Current mass will be 10⁵-10⁷ M_{sun}

- Enough time for BHs to grow from seeds since z=1
- Expect low BH masses *because* they are radiatively efficient (or have low duty cycle)
- Can also grow some BHs of 'normal' mass
- Conflict between observational and astrophysical definitions:

NLS1s are only a subset of the galaxies whose BHs have grown *purely* through secular processes

Future Black Hole Growth

NLS1s will grow more massive BHs and will look like BLS1s... How long will it take to grow by a factor 10?

for $\epsilon \sim 0.2$, this requires 250 Myr of active accretion for duty cycle 3-10%, this will take 2.5-8 Gyr

- NLS1s are only 1/2 to 2/3 of the way to becoming BLS1s
- NLS1s are not in a special phase of BH growth
- Note: where NLS1s are on M-sigma plane and how they evolve across it depends on coupling of BH growth and bulge growth.

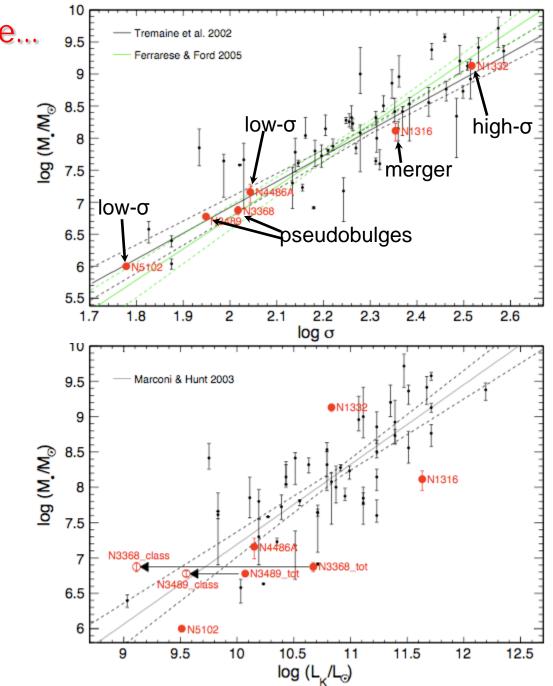
Questions and Answers

The bulges and BHs of NLS1s have grown purely through secular processes without mergers.

Is such a population of galaxies expected?

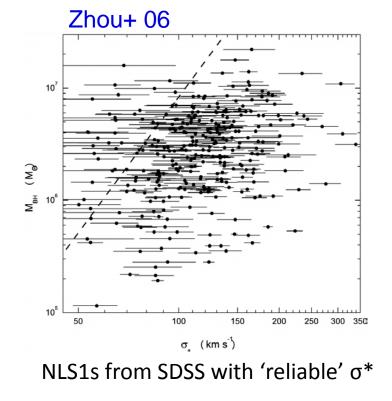
Yes – half or more of spiral bulges grow without major mergers

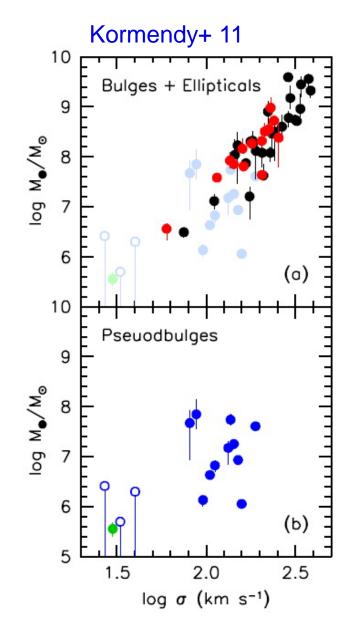
- How long have their bulges & black holes been growing?
 Since z~1, when Hubble sequence was in place and bars became common
- Are their black holes in a special phase of growth?


Not if one takes into account duty cycle & radiative efficiency (Masses are typically low because BHs are spinning rapidly, and they are spinning rapidly because they have grown through secular evolution)

• Do NLS1s lie on the M_{BH} - σ relation?

It's not quite so simple...


Nowak+ 07, 08, 10


- integral field spectroscopy with adaptive optics
- spatially resolved stellar kinematics
- M_{BH} & σ
- Many bulges are composite: M_{BH}-σ and M_{BH}-L relate only to the classical part

Where do pseudo-bulges & NLS1s lie in the M_{BH}-o plane?

- Pseudo-bulges are scattered on and below the M_{BH} - σ plane; so many do lie under the relation
- NLS1s have pseudo-bulges and so scatter similarly

Questions and Some Answers

The bulges and BHs of NLS1s have grown purely through secular processes without mergers.

Is such a population of galaxies expected?

Yes – half or more of spiral bulges grow without major mergers

How long have their bulges & black holes been growing?

Since z~1, when Hubble sequence was in place and bars became common

Are their black holes in a special phase of growth?

Not if one takes into account duty cycle & radiative efficiency

(Masses are typically low because BHs are spinning rapidly, and they are spinning rapidly because they have grown through secular evolution)

• Do NLS1s lie on the M_{BH} - σ relation?

NLS1s are scattered similarly to pseudo-bulges on & under the M_{BH} - σ relation

see Orban de Xivry et al. 2011 – on the arXiv very soon