

The average hard X-ray spectrum of NLS1's (and of other classes of Seyferts)

Claudio Ricci

ISDC Data Centre for Astrophysics

In collaboration with: *Roland Walter Stephane Paltani Thierry Courvoisier*

Ricci et al. 2011, A&A accepted

Study of the average hard X-ray spectra of Seyfert galaxies through stacking analysis of INTEGRAL IBIS/ISGRI images

- INTEGRAL
- NLS1 in the hard X-rays
- The stacking analysis
- The average hard X-ray spectra of NLS1 and

other classes of Seyfert galaxies

Summary & Conclusions

INTEGRAL

Credit: ISDC website

- ESA mission launched on 2002, October 17
- Four instruments coaligned instruments and simultaneously working
- ~1000 sources detected
- Data received as Science Windows (Scw) ~ $1\!\!\!/_2$ hour

05/04/2011

C NLS1 in the hard X-ray sky

14 Narrow line Seyfert 1's detected by INTEGRAL

IGR J21277+5656 +

Mrk 110 + NGC 4051

ESO 399-20

IGR J19378-0617 + IGR J16185-5928 +

> IGR J16385-2057 + IRAS 15091-2107

NGC 5506 + NGC 5506 +

Mrk 783 _____

Mrk 766

05/04/2011

Stacking of all the images of each source of different classes of Seyferts

- Broad energy band (17-250 keV)
- Extremely long exposures (up to ~44 Ms)
- Geometry of the images modified to have consistent PSFs
- Improved software (OSA9)

30 sources removed

- Too close (< 0.4 degrees) to bright sources or to other sources of

the sample

- Classification unclear (Variations Compton-thick/Compton-thin)
- Too bright (>50 σ in the 17-80 keV band)
- z > 0.2

Final sample: 165 Seyfert galaxies detected by INTEGRAL IBIS/ISGRI

The stacking analysis

Stacked mosaics using all the available Scws

Sample	Srcs	Exp. [Ms]	Det. Significance $[\sigma]$
Seyfert 1	44	37.6	91.1
Seyfert 1.5	29	13.2	59.1
Seyfert 2	68	44.0	102.8
CT Seyfert 2	10	4.7	32.9
NLS1	14	10.1	44.3

Stacked mosaics \rightarrow average spectra

The average hard X-ray spectrum of NLS1's

Model-independent spectral analysis:

Ratios of normalized spectra of different classes

The average hard X-ray spectrum of NLS1's

Model-dependent spectral analysis:

cutoff power law continuum model + reflection from neutral matter

Average IBIS/ISGRI+ Swift/XRT spectrum

→ Next talk: Francesca Panessa

Seyfert galaxies

Seyfert 1's and Seyfert 1.5's:

 Consistent average hard X-ray emission → as expected from the Unified model

Compton-thin and Comptonthick Seyfert 2's:

• No trace of more curvature (i.e. more reflection) in the spectrum of CT Sy2's.

Differences between the average hard X-ray spectrum of Sy2's and those of Sy1's and Sy 1.5's?

Differences between the average hard X-ray spectrum of Sy2's and those of Sy1's and Sy 1.5'2s?

<u>The average hard X-ray spectrum of Sy2's shows an excess over that</u> of Sy1's and Sy1.5's in the 20-60 keV band

05/04/2011

Could absorption still play a role?

Could absorption still play a role?

We re-ran the stacking dividing Sy2's in LOB and MOB 34 LOB Sy2's , ~23 Ms cumulative exposure

LOB Seyfert 2's have an average spectrum similar to Sy1's and Sy1.5's

^{05/04/2011}

MOB and LOB Sy2's

We re-ran the stacking dividing Sy2's in LOB and MOB 27 MOB Sy2's , ~14 Ms cumulative exposure

Most of the curvature seen in Sy2's comes from MOB Syfert 2's

05/04/2011

R>1 → transmission efficiency ≅1/R (Ueda et al. 2007)

<u>A clumpy torus?</u>

(e.g. Nenkova et al. 2002)

Continuum dampened and enhanced reflection component

→ Clumpy torus consistent with IR observations (e.g. Mor et al. 2009) MOB Sy2's average spectrum

Soft X-ray study (Kα line) of all the objects of our sample ongoing!

- INTEGRAL detected 14 NLS1's above 20 keV, ~15% of Sy1's, consistent with optical observations
- Average hard X-ray spectrum of NLS1's steeper than Sy1's and Sy1.5's
- Average spectrum of Sy1's and Sy1.5's consistent, as predicted by the zero-th order

Unified Model

- Average hard X-ray spectrum of Seyfert 2's shows more reflection wrt Sy1's & Sy1.5's
 - Most of this reflection comes from MOB ($10^{23} \le N_H \le 10^{24} \text{cm}^{-2}$) Sy2's
 - Is this due to a clumpy torus?
- Study of the K α line (Ricci et al. in prep.)