An X-ray View of NLS1

Andy Fabian
Institute of Astronomy
Cambridge UK
With thanks to
Abdu Zoghi, Luigi Gallo, Yasuo Tanaka, Giovanni Miniutti, Chris Reynolds, Thomas Boller, Neil Brandt, Norbert Schartel, Phil Uttley and others
See also Puchnarewicz+92

Ultrasteep
Extreme X-ray variability

IRAS 13224–3809
ROSAT monitoring

Boller+98
1H0707-495

Gallo+04
X-rays and NLS1

- None in Piccinotti HEAO-1 A2 sample
- (But 1H0707 from HEAO-1 A4 instrument)
- 10% in Einstein low z AGN samples
- 40% in ROSAT samples
- Few in deep fields
- Mostly due to very steep soft X-ray spectra of NLS1
 (from Grupe00)
• Extreme variability supports low mass BH
• High luminosities then imply high Eddington fraction → close to Eddington limit

• XMM reveals sharp drop around 7 keV in some objects
1H0707 Boller+02; Gallo+04
Long-term spectral changes in 1H 0707–495

Gallo+04
Is it absorption or a line?

Fabian+02,04

1H0707
Issues raised by Rapid Variability

- Doubling time t implies from causality that emission and absorber region have size $r < vt$

- If $t < 1000s$ and $M \sim 3 \times 10^6$ M_{\odot} (e.g. NLS1) and v is dynamical velocity, then $r < 10 r_s$

- The rapid variability seen in 1H0707 and IRAS13224 cannot be due to an extensive ($r \sim 100s$ r_s) emission, absorption or scattering region but must be compact and from $< 10r_s$

Partial covering absorption models must address cloud survival
Why might we expect to see a broad iron line?
Reflection from cold matter
Ross+
Fabian05

STRONG IRRADIATION

Temp

O ions

Si ions

Thomson depth in slab
Conserve energy

$\Gamma = 2.0$

$A_{Fe} = 1$

$\xi = 10^2$
Strong Gravity Effects

- Gravitational redshift
- Gravitational light bending
- Dragging of inertial frames in Kerr metric (ISCO depends on BH spin)

NB In rapid spin objects most of power emerges from a few rg
Schwarzschild

Kerr

Fabian+89, Laor 90...
Black Hole Spin

No spin

Max spin

Brennemann+Reynolds08

Energy

Flux

a=0.0
a=0.25
a=0.5
a=0.75
a=0.998
Reflection in accreting BH

- Soft excess
- Broad iron line
- Compton hump

Add relativistic blurring

Reflection spectrum
Suzaku AGN Spin Survey
BH X-ray binaries

Originally compiled by J. M. Miller
Neutron Star Binaries

4U1705-44
Reis+09
R_{in}=10.5r_{g}
Strong light bending close to BH

Martocchia&Matt, Miniutti&Fabian

GR + lightbending make emissivity steep
Broad iron-L and iron-K emission lines in NLS1 1H0707-495

Fabian+09
0.3 keV vs 1-3 keV

Rapid variations
(< 15 min)
Powerlaw leads reflection: Reverberation

See Abdu Zoghbi’s talk for more on reverberation
IRAS13224 Ponti+09

![Graph showing data/model ratio against observed energy (keV)](image1)

![Graph showing data/model ratio against Energy/E_{line})](image2)
2011 Update
1H0707-495

SWIFT monitoring by T Dwelly & P Uttley
Reflection models

Energy (keV)

keV2 (Photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$)

2008

Jan 2011
Behaviour consistent with powerlaw source moving closer to the BH

D. Wilkins
In progress
Blurred reflection is standard ingredient in accreting BH

Soft excess - broad iron line - Compton hump

Add relativistic blurring

Reflection spectrum
MCG-6-30-15 Chiang+Fabian11
see poster outside
Summary

- (Some) NLS1 are extreme X-ray sources
- Consistent physical explanation for behaviour of 1H0707-495, one of the most extreme objects, involves a steep power-law continuum originating just a few gravitational radii from a rapidly spinning black hole
- Such a model may be relevant to other NLS1
Exploring the frequency-energy axes.
 Galactic BH: Disk hot, so line Comptonized

Ross+Fabian07
Reflection in accreting BH

Reflection spectrum

Add relativistic blurring

Soft excess - broad iron line - Compton hump